5p

Megváltó vagy „csak” leváltó lehet Magyar Péter? Kihúzza az Orbán-kormány 2026-ig?
Meddig marad szankciós listán Rogán Antal? Mi lesz a régi ellenzékkel?
Online Klasszis Klub élőben Kéri Lászlóval!

Vegyen részt és kérdezzen Ön is a politológustól!

2025. január 23. 15:30

A részvétel ingyenes, regisztráljon itt!

Hatalmas mennyiségű adat keletkezik az autonóm járművek tesztelése során. A prototípus járművek adatai, valamint a már forgalomban lévő autók egyedi érzékelőiből származó információk segítségével a Continental folyamatosan képes fejleszteni a vezetést segítő funkciókat. A rögzített utazások mentésre kerülnek, majd az új szoftververziók segítségével virtuálisan újrajárhatók lesznek. Ennek eredményeként változatos MI (mesterséges intelligencia) modellek jönnek létre, amelyek olyan szinten kiterjedtek és részletesek, hogy bármilyen elképzelhető forgalmi helyzetet képesek kezelni. A Continental legfontosabb követelménye pedig az, hogy a rendszernek mindig és mindenhol működnie kell.

A kihívások egyike az, hogy azoknak az MI modelleknek, amelyek végső soron lehetővé teszik a jármű számára az esetleges közlekedési helyzetek megoldását, elég kompaktnak kell lenniük ahhoz, hogy elférjenek az autó egy kis chipjében. A technológiát pedig a hosszú élettartamra kell tervezni, mivel egy jármű életciklusa lényegesen hosszabb, mint egy okostelefoné.

A mesterséges intelligencia segít a kiértékelésben

A Continental mesterséges intelligenciára és hatalmas számítási teljesítményre támaszkodik az autonóm vezetéshez szükséges rendszerek kifejlesztése során. Az MI javítja a vezetéstámogató rendszerek teljesítményét, intelligensebbé és biztonságosabbá teszi a mobilitást, valamint felgyorsítja az autonóm vezetéshez szükséges rendszerek fejlesztését. Ennek érdekében a Continental és az NVIDIA egy, az NVIDIA DGX MI rendszeren alapuló nagyteljesítményű számítógépklasztert hozott létre az autonóm vezetés területén történő fejlesztések gyorsítása érdekében. A fejlett vezetést segítő rendszerek az MI-hez fordulnak, amikor döntéseket hoznak, vagy segítik a sofőrt, és természetesen akkor, amikor autonóm módon működnek.

A környezeti érzékelők, például a radarok és kamerák, nyers adatokat szolgáltatnak. Ezeket a nyers adatokat intelligens rendszerek valós időben dolgozzák fel, hogy egy átfogó modellt alkossanak a jármű környezetéről, és egy stratégiát dolgozzanak ki a vele való interakcióra. Végső soron a járművet úgy kell irányítani, hogy rendeltetésszerűen viselkedjen. Ahogyan azonban a rendszerek egyre összetettebbé válnak, a hagyományos szoftverfejlesztés és a klasszikus gépi tanulási módszerek kezdik elérni a határaikat. A mély tanulás és a szimulációk az AI megoldások fejlesztésének alapvető módszereivé válnak, annak érdekében, hogy meg lehessen érteni a környezet magas szintű komplexitását.

A mély tanuláshoz számítási teljesítményre van szükség

A mély tanulás során egy mesterséges neurálisháló lehetővé teszi a gép számára, hogy tapasztalat útján tanuljon, és az új információkat egyesítse a meglévő tudással. Ez lényegében az emberi agy tanulási folyamatát utánozza. A neurális hálók tanításhoz használt adatok főként a Continental tesztjármű-flottájából származnak. Ezek a járművek naponta körülbelül 15 ezer tesztkilométert tesznek meg és körülbelül 100 terabájt adatot gyűjtenek be – ami 50 ezer órányi filmnek felel meg. A rögzített adatokat fel lehet használni az új rendszerek tanítására is oly módon, hogy valódi tesztvezetések szimulálásához játsszák őket újra.

„Arra számítunk, hogy a neurális háló teljes tanításához szükséges idő hetekről órákra fog csökkenni” – mondja Lóránd Balázs, a Continental budapesti MI kompetencia központjának vezetője, aki csapataival együtt azon dolgozik, hogy az MI-alapú innovációkhoz fejlesszen infrastruktúrát és algoritmusokat. A Continental szuperszámítógépe a tanítások mellett a tesztvezetések szimulálását is lehetővé teszi. A továbbiakban a szimulációk csökkenthetik a fizikai flotta által generált adatok rögzítésének, tárolásának és elemzésének szükségességét, mivel az alkalmazandó tanítási szituációk azonnal létrehozhatók magában a rendszerben. Mindez növeli a fejlesztés sebességét, mivel a virtuális járművek annyi tesztkilométert képesek megtenni néhány óra alatt, amennyi egy valódi autónak több hetébe kerülne.

A rendszereknek mindig, mindenhol működniük kell

Nagyteljesítményű rendszerekre van szükség ahhoz, hogy meg lehessen birkózni az egyre növekvő adatmennyiséggel, valamint a jármű egyre változatosabb funkcióival és hálózataival. A hagyományosan elosztott járműarchitektúrák akár száz, vagy annál is több vezérlőegységükkel gyorsan elérik korlátaikat az összetettség és az innovatív funkciók irányítása szempontjából. Egy új és központosítottabb architektúrában a nagyteljesítményű központi feldolgozóegységek kiváltanak néhány hagyományosan elosztott motorverzérlő egységet, és az adatkezelés központi, „elektronikus agyaként” működnek. A jármű a dolgok internetének részévé válik, és az összetettség azáltal egyszerűsödik, hogy a hagyományos járműfunkciók egyetlen motorvezérlő egységben kerülnek összesítésre.

Ezen felül a központi feldolgozóegység a jármű élettartama alatt kezeli a vezeték nélküli szoftver és a firmware frissítéseket. Ez azt jelenti, hogy a jármű mindig naprakész állapotban maradhat, és bármikor telepíthetők új funkciók és alkalmazások.

LEGYEN ÖN IS ELŐFIZETŐNK!

Előfizetőink máshol nem olvasott, higgadt hangvételű, tárgyilagos és
magas szakmai színvonalú tartalomhoz jutnak hozzá havonta már 1490 forintért.
Korlátlan hozzáférést adunk az Mfor.hu és a Privátbankár.hu tartalmaihoz is, a Klub csomag pedig a hirdetés nélküli olvasási lehetőséget is tartalmazza.
Mi nap mint nap bizonyítani fogunk! Legyen Ön is előfizetőnk!